Storm Surge Modeling in the Salish Sea

Zhaoqing Yang^{1,2}, Taiping Wang¹ and Ian Miller³

¹ Marine Sciences Laboratory, PNNL
² Civil and Environmental Engineering, UW
³ Washington Sea Grant, UW

NW Climate Conference

October 10, 2017 Tacoma, WA

Storm Surge and High Water Level in PNW

Windstorms - Mid-latitude extra-tropical cyclones

- Wind speed ~ Category 3 hurricanes
- Large tidal range
 - Salish Sea > 4 m
 - GoM < 0.5 m
 - Consider non-tidal residual (NTR)

Storm Surge Modeling Approach

- Storm events for the period of 1960 – 2016
 - Based on the maximum observed non-tidal residual (NTR) at Seattle tidegage
 - 490 high NTR events were identified
- Storm surge simulations
 - PNNL's Salish Sea Model
 - Model validation with observed tidal and non-tidal water levels

Model forcing

UNIVERSITY of

WASHING

- Observed water levels at Neah Bay and Campbell River
- Surface wind and air pressure Climate Forecast System Reanalysis (CFSR); NARR, observed wind

Top 10 NTR Storm Surge Events (Seattle)

Rank (NTR)	Time
1	12/15/2006 13:00
2	12/13/2015 5:00
3	1/18/2010 19:00
4	12/16/2002 14:00
5	1/1/1997 16:00
6	11/16/2006 4:00
7	1/27/1983 12:00
8	12/12/1995 22:00
9	11/25/1998 11:00
10	12/11/2014 20:00
W	

UNIVERSITY of

WASHINGTON

Hanukkah Eve Windstorm (2006)

December 1995 Windstorm

PNNL's Salish Sea Model - FVCOM

- Unstructured-grid, finitevolume community ocean model (FVCOM)
- Extensively used to simulate tides, coastal circulations, storm surge, waves, and tidal energy in Salish Sea
- Model runs on PNNL's high performance computing system

UNIVERSITY of

WASHINGTON

Comparison of Simulated and Observed WL for Event R1

Data

-Model

•

Comparison of Simulated and Observed NTR for Event R1

1.0

Seattle - No Wind

Comparisons of Simulated and Observed WL at Seattle for Event R2 – R10

Comparisons of Simulated and Observed NTR at Seattle for Event R2 – R10

Consideration of Wind and Air Pressure

High spatial and temporal resolution
Long-term record (1960 – present)

Effect of Sea Level Rise on Storm Surge

- Nonlinear effect: combined water level ≠ surge + SLR
- SLR will exacerbate coastal inundation and storm surge height.

Simulated change of inundation depth due to SLR during Hurricane Katrina landfall

Conclusions and Next Steps

- Non-tidal residual water level (NTR) should be used to quantify storm surge in Puget Sound
- Preliminary results indicate the Salish Sea Model can successfully simulate storm surge in Puget Sound
- Storm surge in Puget Sound is dominated by surge at the entrance of the Strait of Juan de Fuca
- Nest steps
 - Improve model performance with wind forcing
 - Complete model simulations (>100 events)
 - Evaluate model skill with a set of error statistics
 - Maximum water level analysis and mapping

Proudly Operated by Baffelle Since 1965

Thank you!

Zhaoqing Yang Pacific Northwest National Laboratory zhaoqing.yang@pnnl.gov

206-528-3057