Climate change and water scarcity: The potential for social responses and institutional resiliency in the Pacific Northwest

Bill Jaeger

Department of Applied Economics, Oregon State University

Collaborators: Adell Amos (UO Law), Dave Conklin (Oregon Freshwater Simulations), Christian Langpap (OSU), Kathleen Moore (OSU), Andrew Plantinga (UCSB),

For 8th Annual Northwest Climate Conference Tacoma, WA October 9 - 11th

Outline

Overview of WW2100 Model

A few main results

3. Focus on drought mitigation policy

Willamette Water 2100

Anticipating water scarcity and informing integrative water system response

Adell Amos Meagan Atkinson Dan Bigelow John Bolte Sam Chan Heejun Chang Dave Conklin Matt Cox Laura Ferguson Elizabeth Garcia Kelly Gleason Stephanie Graham

Stan Gregory

Gordon Grant

Roy Haggerty

David Hulse

Bill Jaeger Alexey Kalinin Steven Lancaster **Christian Langpap** Maria Lewis Jeff McDonnell Linda Modrell Kathleen Moore Hamid Moradkhani Anita Morzillo Philip Mote Phil Neumann **Anne Nolin** Beau Olen **Andrew Plantinga** Charles Preppernau

Travis Roth Mary Santelmann Cynthia Schwartz **Eric Sproles Adam Stebbins** James Sulzman Naomi Tague Desirée Tullos **Dave Turner April Waters Eric Watson** Scott Wells Josh Williams Maria Wright Junji Wu Kellie Vaché

Willamette Water 2100

Anticipating water scarcity and informing integrative water system response

The main goals of the WW2100 study:

- (1) To project where, when, and under what institutional conditions (laws, regulations, and rights) water scarcity might increase in the WRB.
- (2) To consider what kinds of policies and other actions might be warranted to prepare for, mitigate, or adapt to changes in water scarcity.

See: : http://inr.oregonstate.edu/ww2100

The WW2100 Model of the WRB

Coupled Human-Natural System

Natural System Components

- Mass balance
- Energy balance
- Water balance
- Productivity
- Competition
- Efficiency
- Infrastructure

Human System Components

- Laws of supply & demand
- Market failure
- Productivity
- Competition
- Efficiency
- Institutions

What did we learn?

- Water scarcity varies greatly across small distances and brief time periods, even in basins where water may be relatively abundant overall
- Key determinants of water scarcity are found to be the cost of transporting and storing water, and society's institutions that circumscribe human choices
- Critical to take account of "unexercised or inherent discretionary authority" in the law

Irrigation conveyance costs

(from a river downstream of a dam, to a field currently without an irrigation water right)

Figure 38, Irrigation conveyance costs.

Using models for "Policy Analysis" - asking "What if?" questions

In drought year, can mitigation succeed?

- Urban demands were met
- Irrigation demands were mostly met
- Reservoirs unable to fill in spring
- Mainstem regulatory BiOp flow not met reservoirs at minimum pool

Mainstem Flow at Salem, average

Drought year – from simulations

Policy Analysis Findings:

- Combining these policy interventions could conserve up to 536,000 AF, enough to offset the entire 525,000 AF shortage.
- However, due to the spatial, temporal and sequencing differences between shortages and conservation measures, only about 25% of the shortage can be mitigated.
- Farm irrigation contributes 5%, urban 1%.

Jaeger, W.K., et al., Water, Economics, and Climate Change in the Willamette Basin, Oregon" Oregon State University EM 9157. https://catalog.extension.oregonstate.edu/em9157

Jaeger, W.K., et al., Finding Water Scarcity Amid Abundance Using Human-Natural System Models, Proceedings of the National Academy

of Sciences, 2017 forthcoming.

> The WW2100 interactive website:

http://inr.oregonstate.edu/ww2100

