A Multi-methods Analysis of Vertical Land Movement in Coastal Washington

Tyler Newton
University of Oregon

Motivation

 Provide an estimate of vertical land motion from diverse datasets to assist sea level rise assessments

Method

- 3D linear interpolation which incorporates regional data, their uncertainties, and a tectonic uplift model

Inputs

Geodetic Leveling

GPS

Tide Gauges

Locking Model

Data Coupling

- Data is adjusted to a common reference frame with propagated uncertainties.

Locking Model

Inputs

Interpolated Coastline Vertical Velocity

Interpolated Coastline Vertical Velocity Uncertainty

Inputs

Geodetic Leveling

GPS

Tide Gauges

Locking Model

Interpolation with and without Locking Model

Interpolated Coastline Vertical Velocity Uncertainty

Extrapolation to 2100

Hypothetical Rupture in 2100

Future Work

- More complex interpolation methods, incorporating data weighting
- Comprehensive incorporation of GIA into analysis

Future Work

- More complex interpolation methods, incorporating data weighting
- Comprehensive incorporation of GIA into analysis

Special thanks to:

Ray Weldon, Ian Miller, David Schmidt, and our numerous collaborators.