Using the Three Step Decision Framework

(%

To Develop Protection, Restoration and Enhancement Strategies for Greater Sage-Grouse

8th Annual Northwest Climate Conference • 10 October 2017 • Tacoma, WA

Working Relationships

Greater Sage-Grouse in the Columbia Basin of Washington

Representation Four extant populations All geographically isolated from external populations Real Associated with: 🕫 Riparian **Wetlands** Cand Conversions **G** Fragmentation

A Bird Well Studied ...

- R Long-term population index monitoring via lek counts
- ☞ Google Scholar lists >1,000 publications on the species since 2010

Notable Management & Planning Documents include:

- R Washington State Wildlife Action Plan (http://wdfw.wa.gov/conservation/cwcs/)
- WDFW Greater Sage-grouse Ecology page (http://wdfw.wa.gov/conservation/research/projects/grouse/greater_sage-grouse/)
- Recovery Plan (http://wdfw.wa.gov/publications/00395/)
- Columbia Basin Landscape Conservation Design (https://www.sciencebase.gov/catalog/item/53fbab92e4b040acab80df7a)
- Science Framework for the Conservation and Restoration Strategy (https://www.fs.usda.gov/treesearch/pubs/52275)

Climate Suitability: Sagebrush

Great Northern

Ensemble projection for 2100 (after Bradley 2010)

Key Vulnerability Components

THREE-STEP DECISION SUPPORT FRAMEWORK FOR CLIMATE ADAPTATION: Selecting Climate-Informed Conservation **Goals and Strategies for Native Salmonids** in the Northern U.S. Rockies

Regan Nelson, Crown Conservation Initiative Molly Cross, Wildlife Conservation Society Lara Hansen, EcoAdapt Gary Tabor, Center for Large Landscape Conservation

Conservation CONSE

Conservation **Objectives** Team (COT) Report

Washington State Wildlife Action Plan **GRSG:** ecology and conservation of a landscape species

Great Northern

Key Vulnerability Components

Greater Sage-grouse			
Shrub-Steppe / Grasslands			
Wetlands, Riparian Floodplain			
GRSG Priority Areas for Conservation			
Habitat Suitability			
Sagebrush (presence, vigor)			
Diverse Forb & Grass Components			
Adjacent mesic habitats (wetland, riparian)			
Grass (stubble) height			
Competition / Species Interactions			
Invasive Annual Grass			
Invasive Forbs			
Arthropod Prey Abundance			
Vulnerability to Predators			
Connectivity			
Genetic Connectivity (reproduction)			
Demographic Connectivity (distribution)			
Dispersal			

Gr

Vulnerability Levels

Climate Change Vulnerability Factors	Increasing Vulnerability to Climate Change				
Habitat Suitability	Habitat likely to remain or become suitable Habitat likely to become marginal Habitat likely to become suitable				
Threats from Non-Native Species	Threat from annual grass invasions likely to be low Threat from annual grass invasions likely to be high				
Connectivity and Landscape Context	Population likely to connect Population likely to remain or become isolated				

3 Steps of the Framework

Assess vulnerability of selected population Use vulnerability matrix to clarify management goals and select adaptation strategies

Select actions to implement chosen adaptation strategies

Assess vulnerability of selected population

Are diverse native plant forage species currently present and abundant?

LANDSCAPE CONSERVATION COOPERATIVE

STEP 1: Assess Vulnerability of Greater Sage-grouse to Climate Change

	Habitat Suitability: To what extent	Threats from Non-Native Species:	Connectivity and Landscape
	will climate change alter sagebrush	To what extent will climate change	Context: To what extent will
1	community composition, structure	increase the threat that non-native	climate change alter the degree of
	and function?	plant invasions present to Greater	connectivity of the population to a
		Sage-grouse?	larger network of populations and
			suitable habitat?
	Will precipitation amounts, timing and		Is the focal Greater Sage-grouse
	form (rain/snow) remain consistent		population currently isolated, or are
	enough to support native plant	Are diverse native plant forage species	they connected to a larger network of
	populations and assemblages?	currently present and abundant?	populations and habitat?
			If currently connected to a larger
			network, do you expect this
			connectivity to remain giving changing
<u> </u>		Might climate change alter populations	climate conditions (e.g., is the existing
8	Will the area experience 3 or more	of native shrubs, forbs and grasses	habitat vulne rable to fragmentation by
š.	drought years per decade?	through altered fire cycles?	as climate changes)?
Ë I	Are key habitat structure and		
ບ ເ	composition (e.g., big r debrush		
0	presence, abundant overse native		
	forbs and shrubs' expected to remain	Could climate change potentially	Is there currently or is it expected that
SC 1	or become surable as dimate	further reduce the Greater Sage-	sagebrush-dominated communities will
<u>e</u>	changes?	grouse population's forage species?	include 2 25% of the landscape?
ti I		Will exotic annual grasses or other	Are features present (>4 humans/km ² ,
a	Will Schropod population abundance	non-native weedy plant species expand	agriculture, urban, other non-habitats)
đ	and diversity remain or become	their range or increase in density and	that could become barriers to sage-
ਹੁ /	ruitable to support adult and juvenile	exclude presence and abundance of	grouse movement under changing
9	sage-grouse survivair	native foros and perennial grasses?	climate?
4	Could climate-driven changes in numan		An exception to the second state by
e .	resource use (e.g., artered grazing		Are sage brush patches expected to be
$\overline{\Phi}$	Intensity) anect Greater Sage-grouse		equal to exceed (metric) in size now
	habitat quantity or quality:		In the Greater Spreamoure population
	Are core bourb leaves expected to be		Evelv to parriet sives chapping directe
	suciable (exposed above soon over)		conditions and associated extreme
	in winter?		events?
			Are climate-driven changes likely to
			interfere with extent, persistence or
			juxtaposition of key Greater-Sage-
			grouse habitats (e.g., expansive
	Is the Greater-Sage-prouse population		sagebrush dominated stands, riparian
	naturally more resilient to changing		and wetland habitats, seasonal mesic
	climate conditions?		shrub/grass availability)?

Use vulnerability matrix to clarify management goals and select adaptation strategies

bilities	Considering your answers above, choose the most appropriate level of vulnerability of the population to climate change effects on sagebrush community composition, structure and function:	Considering your answers above, choose the most appropriate level of vulnerability of the population to climate change effects on non-native plant invasions:	Considering your answers above, choose the most appropriate level of vulnerability of the population to climate change effects on connectivity and landscape context:
ira	A - Habitat likely to remain or	D - Threats from non-native plant	F - Population Likely to be
ne	become suitable	invasions likely to be low	connected to a larger network
/nl	B - Habitat likely to become	E - Threats from non-native plant	G - Population likely to remain or
s <	marginal (i.e., at or near	invasions likely to be high (because	become isolated
es	thresholds for focal species)	already present of likely to increase)	
SS	C - Habitat likely to become		
A	unsuitable		
	Answer:	Answer:	Answer:

If you answered:	Go to Box:	If you answered:	Go to Box:	If you answered:	Go to Box:
ADF	1	BDF	2	CDF	3
ADG	4	BDG	5	CDG	6
AEF	7	BEF	8	CEF	9
AEG	10	BEG	11	CEG	12

Use vulnerability matrix to clarify management goals and select adaptation strategies

		Habitat Remains or	Habitat Becomes	Habitat Becomes
		Becomes Suitable	Marginal	Unsuitable
		Relative vulnerability to Climate	Relative vulnerability to Climate	Relative vulnerability to Climate
		Change:	Change:	Change:
	5	Low - BOX 1	Medium – BOX 2	Medium-High – BOX 3
	5	Relative value for conservation:	Relative value for conservation:	Relative value for conservation:
	-isi	High values in both the short and long	Potential value over long term, but will	Potential value in the short term to
	2	term.	likely require investment to moderate	help with population recovery,
			climate impacts	maintenance of genetic diversity
	TE			value is lower due to decreasing
	Ë			habitat suitability
\mathbf{x}	ų.	Potential Goal: Protect and maintain	Potential Goal: Improve the suitability	Potential Goal: Maintain population in
5	- É	(or improve if warranted) habitat	of habitat supporting this population	the short-term; in the longer-term,
¥ I	N	supporting this population for long-	for long-term conservation of Greater	consider facilitating the movement of
2	Ŧ	term conservation of Greater sage-	sage-grouse	with more suitable conditions
<u>e</u>	2	B.cost		facilitating the transition of the location
\leq	E I			to a new state, and/or managing the
5	b.			location for other targets/objectives
60	÷.	Strategies:	Strategies:	Strategies:
5	g	 Maintain resistance from non-native plant invasions 	 Promote resistance to non-native plant invasions 	Bemove cattle grazing
Ľ	Ĕ.	 Maintain resilience to wildfire 	 Minimize cattle grazing pressure 	 Remove wild horses
(C)	F	-Maintain grazing pressure at or below	 Remove wild horses 	 Prioritize wildfire fighting resources
0	<u>8</u>	current level	 Prioritize wildfire fighting resources 	 Maintain ecological connectivity
-	1	 Prioritize wildfire fighting resources 	 Expand/Setound Populations 	 Reduce non-climate stressors
D I		 Expand/Second Populations Maintain ecological connectivity 	Reduce conditinate stressors	 Consider moving sage-grouse to better babitat
14		 Reduce non-dimate stressors 		
8		Relative vulnerability to Climate	Relative vulnerability to Climate	Relative vulnerability to Climate
č	S I	Change:	Change:	Change:
Ē	ē	Medium-Low – BOX 4	Medium-High – BOX 5	High – BOX 6
31	as	Relative value for conservation:	Relative value for conservation:	Relative value for conservation:
~	2	High values in both the short and long term but may require investment to	Potential value over long term, but will require a bisb level of investment to	Potential value in the short term to belo with population recovery
. <u>∽</u>	Ŧ	prevent/remove/suppress non-native	both moderate climate impacts and	maintenance of genetic diversity
C	a	plant invasions	prevent/remove/suppress non-native	and/or local adaptations but will
.9	E		plants	require investment to prevent
岩	8			/remove/suppress non-native plants;
≕	봆			Longer-term value is lower due to decreasing babitat suitability
۲ d	Z,	Potential Goal: Prevent invasion of	Potential Goal: Prevent invasion of	Potential Goal: Facilitate the
0	Ś	non-native plants (or remove/suppress	non-native plants (or remove/suppress	movement of current population to
	z	if already present) and protect and	if already present) and improve the	other locations with more suitable
	Е	maintain (or improve if warranted)	suitability of habitat supporting this	conditions; Facilitate the transition of
	2	conservation of Greater Supersurve	of Greater Same-grouse	managing the location for other
	Ħ			targets/objectives
	ĕ	Strategies:	Strategies:	Strategies:
	F	 Manage for resistance to non-native 	 Restore resistance to non-native plant 	 Consider experimental approaches to
	E I	plant invasions	Invesions Description for any application along	restore resistance to non-native plant
	. <u>eo</u>	 Wardan resilience to wrante Expand/Refound Populations 	management and wildfire prevention	Facilitate plant community transition
	Ξ	 Promote ecological connectivity 	 Minimize cattle grazing pressure 	 Remove cattle grazing
		 Reduce non-climate stressors 	 Remove wild horses 	 Remove wild horses

STEP 2: Use Vulnerability Matrix to Clarify Management Goals and Select Climate Adaptation Strategies

Use vulnerability matrix to clarify management goals and select adaptation strategies

In this example ...

Great Northern

 Habitat Remains or Becomes Suitable
 Populations Remain or Become Isolated
 Low Threat from Non-Native Grass Invasions

The Users get a summary of
 Population's relative vulnerability
 Relative value for conservation
 Population-specific potential goals and strategies

Relative vulnerability to Climate Change:

Medium-Low – BOX 7

Relative value for conservation: Potential value for providing genetic diversity and/or local adaptations in both the short and long term, but will likely require investment to address fragmentation

Potential Goal: Evaluate representativeness of this population across the landscape, and determine what level of protection/reconnection to other habitats is warranted

Strategies:

 Maintain resistance from non-native plant invasions

- Maintain resilience to wildfire
- Expand/Refound Populations
- Recover ecological connectivity with adjacent landscapes
- Reduce non-climate stressors
- Augment genetic diversity

Strategy to Action

Select actions to implement chosen adaptation strategies

1				
	Strategies: • Maintain resistance from non-r plant invasions • Maintain resilience to wildfire • Expand/Refound Populations • Recover ecological connectivity adjacent landscapes • Reduce non-climate stressors	native with	Actions "N locally-rel (i.e., SWAP, Ya	Menu" drawn from evant conservation plans kama Climate Adaptation Strategy)
	Strategy	Objective		Example Actions
	Maintain resistance from non-	Prevent non-r	native plants otic annual grasses)	 Emphasize funding for early detection, rapid response Regular monitoring for early detection of invasions

tions hasize funding for early detection, rapid response lar monitoring for early detection of invasions Rapid Response strategy to quickly treat invasive from gaining a foothold plant detections Curtail invasion vectors Enhance native plant communities to promote natural resilience Integrated habitat restoration using prescribed fire, weed control, and seeding with native vegetation (SWAP) Update and implement the 2009 Integrated Weed Management Plan (YN) Invasive species control (cheatgrass in particular) (SWAP) Mechanical and herbicide control of invasive species at Northerr (SWAP)

Decision Support

Select actions to implement chosen adaptation strategies

Framework provides:

- CR Triage: Which populations warrant conservation investment?
- Cost/Benefit: Where is best bang for buck?
- Actions: What should be done? And how much confidence do we have in those actions?
- Roles: Who among partners is most poised for a given action?

Cross Reference with Sympatric Decision Processes

Common structure enables a consistent, collaborative approach

Outcomes

- Coordinated decision process informed by bestavailable science
- Realized Framework for scaled & replicated conservation action treatment evaluation
- R Integration pathway to manage for climate change resilience at a landscape scale

