Climate Change and Cleanup

A vulnerability assessment and adaptation strategy

Who are we? Toxics Cleanup Program (TCP)

Chance Asher, Ecology

Hugo Froyland, Ecology

Scott O'Dowd, Ecology

Teresa Michelson, Farallon

Who are we thankful for?

Individuals: Mike Ehlebracht, Hart Crowser Kelly Klima, RAND Corporation Ian Miller, Sea Grant

The Adaptation Guidance

Purpose

- 1. To survey data and evaluate the potential for climate change impacts to threaten cleanup sites. How? A summary of climate science and impacts to NW.
- 2. To provide site managers and planners with tools to evaluate the potential impacts to specific sites. How? A set of GIS tools collect existing data in one place with site data.
- 3. To provide actions that site managers may apply to the existing cleanup framework. How? Risk scenarios for different site types and factors to consider during each phase of cleanup.

Cleanup as infrastructure

Cleanup is "hidden" infrastructure

What is a landfill cap?

MPERMEABLE

GAS VENT LAYER

Goals of cleanup infrastructure

Cleanup Economics

- Cleanup costs money, BUT ALSO!!
- Cleanup generates/protects money (a.k.a. economic activity)!

Cleanup infrastructure is vulnerable to extreme weather

San Jacinto River Waste Pits Superfund Site-Houston, TX

The Upshot: Why we wrote this

- Adapting cleanup projects to the impacts of climate change has not received as much attention in the literature as other types of infrastructure have.
- What this guidance aims to build upon:
 - Remedy's health- and environmental-protectiveness,
 - Permanence of remedies, and
 - Long-term economics of remediation in a changing environment.

Understanding the threats

Four Major Impacts

Aerial of British Columbian smoke from 2017 wildfire

View of Oso landslide Washaway Beach, Washington

Extreme storms

Wildfire

- Direct damage of equipment and infrastructure
- Destructive contouring of surface
- Increased potential for erosion, debris flow, and sedimentation
- Potential to restrict site access during widespread fires

Climate Change Tie

- Changes to precipitation and snowpack affecting water distribution
- Shifts in vegetation that could change existing fire regime

Geomorphic Change-Landslide and Erosion

<u>Harms</u>

- Direct damage to equipment and infrastructure
- Destructive contouring of surface and subsurface environments
- Direct spread of contaminated material
- Introduction of new pathways for contamination to spread

Climate Change Tie

- Coastal landforms impacts by sea level rise and extreme weather
- Link between timing and type of precipitation with landslide triggers

Photo of Port Angeles Landfill Accelerated Geotechnical Investigation and Design, Aspect Consulting

Sea level rise and storm surge

- Direct damage to equipment infrastructure
- Changes to chemistry and geophysics
- Increased engineering needs for periodic or complete inundation
- Spread of contaminated material

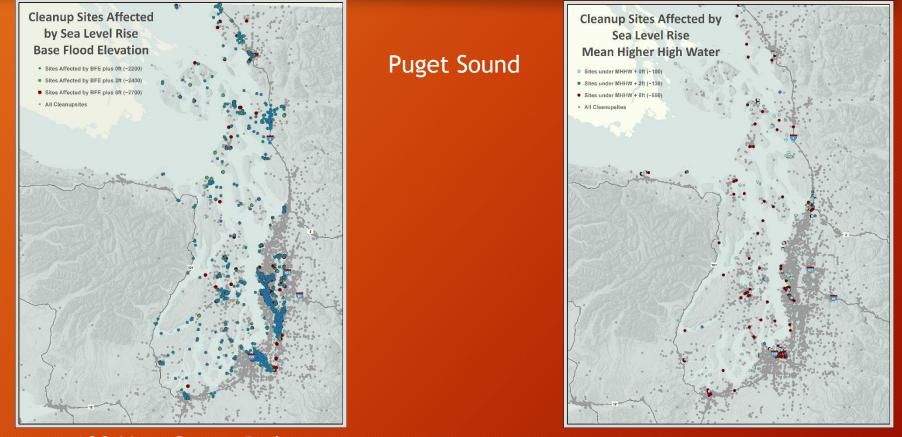
Climate Change Tie

- Warmer temperatures leading to sea level rise
- Increased potential for extreme weather events

Inland flooding (Storms & Change in Precipitation Patterns/Form)

- Direct damage to equipment and infrastructure
- Changes to site geophysics
- Spread of contaminated materials

Climate change tie


- Increased potential for extreme weather events
- Changes to snow pack and glacial storage of precipitation
- Non-extreme changes to weather patterns

Bridge in Ferry County that washed out during the April 2017 storms. Ferry County Sherriff's office.

Visualizing the threat—Sea Level Rise

100-Year Storm Risk

Tidal Risk

Planning for uncertainty: A Framework

$RISK = HAZARD \times EXPOSURE$

Toxicology Education Foundation

Adapting investigations, plans, and designs

Adaptive Management

Planning and design that includes additional options if contingencies occur during cleanup.

A non-cleanup example: Seattle's Elliot Bay Seawall includes features that will allow modification in the future if conditions require more protection.

Questions or Comments?

Contacts: Scott O'Dowd, Cleanup Policy Engineer scott.odowd@ecy.wa.gov Chance Asher, Sediment Policy Lead chance.asher@ecy.wa.gov Hugo Froyland, GIS Developer hugo.froyland@ecy.wa.gov

