Mechanisms of Vegetation Response to Climate Change in the Pacific Northwest Simulated by DGVM's: Are They Reliable?

8th Annual Northwest Climate Conference
October 9-11, 2017
Tacoma, Washington

Michael Case, University of Washington
John Kim, US Forest Service Pacific Northwest Research Station
Becky Kerns, US Forest Service Pacific Northwest Research Station

Dynamic Global Vegetation Models (DGVMs)

MAPSS-Century 2 (MC2) "Biomes"

Legend

Desert

Forest

2080

MAPSS-Century 2 (MC2)

Percent Change in NPP from Historical (1970-1999) to 2080

LPJ "Biomes"

- Cold grass/shrub
- Cold forest
- Cool forest
- Coastal cool forest
- Cold open forest/woodland
- Cool open forest/woodland
- Cool open mixed forest/woodland
- Savanna/grassland/steppe
- Shrub-steppe
- Dry shrub
- Barren

What do other models say?

D. Mildrexler et al. / Remote Sensing of Environment 173 (2016) 314-325

Forest Change – case study in southern Oregon

Green = MC2 forest expansion Black = Forest Vulnerability Index

Historical data (paleo evidence)

Warm/dry climates

 Dry forests replaced cool/wet species, woodlands shrink (Blinnikov et al. 2002)

Warm/wet climates

- Wet species replaced dry forests, woodlands expand (Whitlock and Bartlein 1997)
- ➤ Disturbances will have a major effect in determining which species will persist
- ➤ Dry forests may be more resilient than other forest types (Halofsky et al. 2014)

Need to model major driver #1

Hotter climate Increased productivity

(longer growing season, CO₂ fertilization effect)

Increased drought stress (lower snowpack, hotter summers)

Increased fire activity

Insects & disease

Invasive species

Logging

Better tree physiology models

Resilience

Regeneration

Dispersal

Management

Development

Future forests

Need to model major driver #2

Hotter climate Increased productivity

(longer growing season, CO₂ fertilization effect)

Increased drought stress (lower snowpack, hotter summers)

Increased fire activity

Insects & disease

Invasive species

Logging

Resilience

Regeneration

Dispersal

Management

Development

Future forests

Better fire models

Where (and why) some models get it wrong

- What do other lines of evidence indicate?
- What are the implications for interpreting model projections?
- What about tree physiology and drought response?
- What do we know about regeneration & succession dynamics?
- What methods exist to evaluate and synthesize those lines of evidence?

