Selecting climate change scenarios using impact-relevant sensitivities

Julie Vano, David Rupp, Philip Mote Oregon State University

John Kim U.S. Forest Service

September 10, 2014 PNW Climate Science Conference Seattle, WA

Model	Center
BCC-CSM1-1	Beijing Climate Center, China Meteorological Administration
BCC-CSM1-1-M	Beijing Climate Center, China Meteorological Administration
BNU-ESM	College of Global Change and Earth System Science, Beijing
Bito Bolli	Normal University China
CanESM2	Canadian Centre for Climate Modeling and Analysis
CCSM4	National Center of Atmospheric Research USA
CESM1-BGC	Community Earth System Model Contributors
CESM1-CAM5	Community Earth System Model Contributors
CESM1-FASTCHEN	Community Earth System Model Contributors
CESM1-WACCM	Community Earth System Model Contributors
CMCC-CESM	Centro Euro-Mediterraneo per I Cambiamenti Climatici
CMCC-CM	Centro Euro-Mediterraneo per I Cambiamenti Climatici
CMCC-CMS	Centro Euro-Mediterraneo per I Cambiamenti Climatici
CNRM-CM5	National Centre of Meteorological Research, France
CNRM-CM5-2	National Centre of Meteorological Research, France
CSIRO-Mk3-6-0	Commonwealth Scientific and Industrial Research Organization/
	Oueensland Climate Change Centre of Excellence. Australia
EC-EARTH	EC-EARTH consortium
FGOALS-g2	LASG. Institute of Atmospheric Physics. Chinese Academy of Sciences
FGOALS-s2	LASG. Institute of Atmospheric Physics. Chinese Academy of Sciences
FIO-ESM	The First Institute of Oceanography, SOA, China
GFDL-CM3	NOAA Geophysical Fluid Dynamics Laboratory, USA
GFDL-ESM2G	NOAA Geophysical Fluid Dynamics Laboratory, USA
GFDL-ESM2M	NOAA Geophysical Fluid Dynamics Laboratory, USA
GISS-E2-H	NASA Goddard Institute for Space Studies, USA
GISS-E2-H-CC	NASA Goddard Institute for Space Studies, USA
GISS-E2-R	NASA Goddard Institute for Space Studies, USA
GISS-E2-H-CC	NASA Goddard Institute for Space Studies, USA
HadCM3	Met Office Hadley Center, UK
HadGEM2-AO	Met Office Hadley Center, UK
HadGEM2-CC	Met Office Hadley Center, UK
HadGEM2-ES	Met Office Hadley Center, UK
INMCM4	Institute for Numerical Mathematics, Russia
IPSL-CM5A-LR	Institut Pierre Simon Laplace, France
IPSL-CM5A-MR	Institut Pierre Simon Laplace, France
IPSL-CM5B-LR	Institut Pierre Simon Laplace, France
MIROC5	Atmosphere and Ocean Research Institute (The University of Tokyo),
	National Institute for Environmental Studies, and Japan Agency
	for Marine-Earth Science and Technology
MIROC-ESM	Japan Agency for Marine-Earth Science and Technology, Atmosphere
	and Ocean Research Institute (The University of Tokyo), and National
	Institute for Environmental Studies
MIROC-ESM-	Japan Agency for Marine-Earth Science and Technology, Atmosphere
CHEM	and Ocean Research Institute (The University of Tokyo), and National
	Institute for Environmental Studies
MPI-ESM-LR	Max Planck Institute for Meteorology, Germany
MPI-ESM-MR	Max Planck Institute for Meteorology, Germany
MRI-CGCM3	Meteorological Research Institute, Japan
NorESM1-M	Norwegian Climate Center, Norway

Lots of Global Climate Model output available

Rupp et al. JGR 2013

Model	Center
BCC-CSM1-1	Beijing Climate Center, China Meteorological Administration
BCC-CSM1-1-M	Beijing Climate Center, China Meteorological Administration
BNU-ESM	College of Global Change and Earth System Science, Beijing
	Normal University. China
CanESM2	Canadian Centre for Climate Modeling and Analysis
CCSM4	National Center of Atmospheric Research, USA
CESM1-BGC	Community Earth System Model Contributors
CESM1-CAM5	Community Earth System Model Contributors
CESM1-FASTCHEM	A Community Earth System Model Contributors
CESM1-WACCM	Community Earth System Model Contributors
CMCC-CESM	Centro Euro-Mediterraneo per I Cambiamenti Climatici
CMCC-CM	Centro Euro-Mediterraneo per I Cambiamenti Climatici
CMCC-CMS	Centro Euro-Mediterraneo per I Cambiamenti Climatici
CNRM-CM5	National Centre of Meteorological Research, France
CNRM-CM5-2	National Centre of Meteorological Research, France
CSIRO-Mk3-6-0	Commonwealth Scientific and Industrial Research Organization/
	Queensland Climate Change Centre of Excellence, Australia
EC-EARTH	EC-EARTH consortium
FGOALS-g2	LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences
FGOALS-s2	LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences
FIO-ESM	The First Institute of Oceanography, SOA, China
GFDL-CM3	NOAA Geophysical Fluid Dynamics Laboratory, USA
GFDL-ESM2G	NOAA Geophysical Fluid Dynamics Laboratory, USA
GFDL-ESM2M	NOAA Geophysical Fluid Dynamics Laboratory, USA
GISS-E2-H	NASA Goddard Institute for Space Studies, USA
GISS-E2-H-CC	NASA Goddard Institute for Space Studies, USA
GISS-E2-R	NASA Goddard Institute for Space Studies, USA
GISS-E2-H-CC	NASA Goddard Institute for Space Studies, USA
HadCM3	Met Office Hadley Center, UK
HadGEM2-AO	Met Office Hadley Center, UK
HadGEM2-CC	Met Office Hadley Center, UK
HadGEM2-ES	Met Office Hadley Center, UK
INMCM4	Institute for Numerical Mathematics, Russia
IPSL-CM5A-LR	Institut Pierre Simon Laplace, France
IPSL-CM5A-MR	Institut Pierre Simon Laplace, France
IPSL-CM5B-LR	Institut Pierre Simon Laplace, France
MIROC5	Atmosphere and Ocean Research Institute (The University of Tokyo),
	National Institute for Environmental Studies, and Japan Agency
	for Marine-Earth Science and Technology
MIROC-ESM	Japan Agency for Marine-Earth Science and Technology, Atmosphere
	and Ocean Research Institute (The University of Tokyo), and National
	Institute for Environmental Studies
MIROC-ESM-	Japan Agency for Marine-Earth Science and Technology, Atmosphere
CHEM	and Ocean Research Institute (The University of Tokyo), and National
	Institute for Environmental Studies
MPI-ESM-LR	Max Planck Institute for Meteorology, Germany
MPI-ESM-MR	Max Planck Institute for Meteorology, Germany
MRI-CGCM3	Meteorological Research Institute, Japan
NorESM1-M	Norwegian Climate Center, Norway

Lots of Global Climate Model output available

Rupp et al. JGR 2013

To address this frustration...

- Identify subset Global Climate Models that:
- good performers, meaning they adequately simulate historical climate, providing plausible results for the region of interest
- span the range of possible futures for the variables that are most important to the impact under investigation

Image from http://www.activatedesign.co.nz/blog/the-frustration-of-almost-perfect-websites/

To address this frustration...

- Identify subset Global Climate Models that:
- 1) good performers, meaning they adequately simulate historical climate, providing plausible results for the region of interest
- 2) span the range of possible futures for the variables that are most important to the impact under investigation

Image from http://www.activatedesign.co.nz/blog/the-frustration-of-almost-perfect-websites/

1. CESM1-CAM5 18. BNU-ESM

19. FIO-ESM

20. MPI-ESM-LR

21. GFDL-CM3

22. MRI-CGCM3

24. FGOALS-s2

25. FGOALS-q2

26. GISS-E2-R

27. GISS-E2-H

28. bcc-csm1-1

29. GFDL-ESM2M

30. GFDL-ESM2G

32. MIROC-ESM

33. IPSL-CM5B-LR

31. MIROC-ESM-CHEM

23. inmcm4

- 2. CCSM4
- 3. CNRM-CM5
- 4. HodGEM2-ES
- 5. HodGEM2-CC
- 6. CMCC-CM
- 7. EC-EARTH
- 8. ConESM2
- 9. IPSL-CM5A-MR
- 10. bcc-csm1-1-m
- 11. HodGEM2-AO
- 12. MIROC5
- 13. NorESM1-M
- 14. CMCC-CMS
- 15. CSIRO-Mk3-6-0
- 16. IPSL-CM5A-LR
- 17. MPI-ESM-MR

Global Climate Model ranking for Pacific Northwest by Rupp et al. JGR 2013

To address this frustration...

- Identify subset Global Climate Models that:
- good performers, meaning they adequately simulate historical climate, providing plausible results for the region of interest
- 2) span the range of possible futures for the variables that are most important to the impact under investigation

Image from http://www.activatedesign.co.nz/blog/the-frustration-of-almost-perfect-websites/

Global Climate Models precipitation and temperature responses

1. CESM1-CAM5	18. BNU-ESM			
2. CCSM4	19. FIO-ESM			
3. CNRM-CM5	20. MPI-ESM-LR			
4. HodGEM2-ES	21. GFDL-CM3			
5. HodGEM2-CC	22. MRI-CGCM3			
6. CMCC-CM	23. inmcm4			
7. EC-EARTH	24. FGOALS-s2			
8. ConESM2	25. FGOALS-g2			
9. IPSL-CM5A-MR	26. GISS-E2-R			
10. bcc-csm1-1-m	27. GISS-E2-H			
11. HodGEM2-AO	28. bcc-csm1-1			
12. MIROC5	29. GFDL-ESM2M			
13. NorESM1-M	30. GFDL-ESM2G			
14. CMCC-CMS	31. MIROC-ESM-CHEM			
15. CSIRO-Mk3-6-0	32. MIROC-ESM			
16. IPSL-CM5A-LR	33. IPSL-CM5B-LR			
17. MPI-ESM-MR				
Legend key:				
Dark = MACA available				
Light = MACA not available				

Models ranked by performance index

GCM ranking from Rupp et al. (JGR 2013), blue = RCP 4.5, red = RCP 8.5, Eastern Washington region 1970-1999 to 2041-2070

Global Climate Models precipitation and temperature responses

1. CESM1-CAM5	18. BNU-ESM	
2. CCSM4	19. FIO-ESM	
3. CNRM-CM5	20. MPI-ESM-LR	
4. HodGEM2-ES	21. GFDL-CM3	
5. HodGEM2-CC	22. MRI-CGCM3	
6. CMCC-CM	23. inmcm4	
7. EC-EARTH	24. FGOALS-s2	
8. ConESM2	25. FGOALS-g2	
9. IPSL-CM5A-MR	26. GISS-E2-R	
10. bcc-csm1-1-m	27. GISS-E2-H	
11. HodGEM2-AO	28. bcc-csm1-1	
12. MIROC5	29. GFDL-ESM2M	
13. NorESM1-M	30. GFDL-ESM2G	
14. CMCC-CMS	31. MIROC-ESM-CHEM	
15. CSIRO-Mk3-6-0	32. MIROC-ESM	
16. IPSL-CM5A-LR	33. IPSL-CM5B-LR	
17. MPI-ESM-MR		
Legend key:		
Dark = MACA available		
Light = MACA not available		
Models ranked by performance index		

GCM ranking from Rupp et al. (JGR 2013), blue = RCP 4.5, red = RCP 8.5, Eastern Washington region 1970-1999 to 2041-2070

Impact-relevant concept: Hydrologic Sensitivities from Vano et al.

Impact-relevant concept: Hydrologic Sensitivities from Vano et al.

Figures from Vano et al. (WRR, in review)

Impact: Seasonal Streamflow

Non-linear temperature response and linear precipitation response

Selecting climate scenarios using hydrologic sensitivities

irrigation season (Apr-Sep) streamflow sensitivity in the Yakima River basin, WA

1. CESM1-CAM5	18. BNU-ESM
2. CCSM4	19. FIO-ESM
3. CNRM-CM5	20. MPI-ESM-LR
4. HodGEM2-ES	21. GFDL-CM3
5. HodGEM2-CC	22. MRI-CGCM3
6. CMCC-CM	23. inmcm4
7. EC-EARTH	24. FGOALS-s2
8. CanESM2	25. FGOALS-g2
9. IPSL-CM5A-MR	26. GISS-E2-R
10. bcc-csm1-1-m	27. GISS-E2-H
11. HodGEM2-AO	28. bcc-csm1-1
12. MIROC5	29. GFDL-ESM2M
13. NorESM1-M	30. GFDL-ESM2G
14. CMCC-CMS	31. MIROC-ESM-CHEM
15. CSIRO-Mk3-6-0	32. MIROC-ESM
16. IPSL-CM5A-LR	33. IPSL-CM5B-LR
17. MPI-ESM-MR	

Legend key: Dark = MACA available Light = MACA not available

Models ranked by performance index

GCM ranking from Rupp et al. (JGR 2013), contours of streamflow change derived from S and ε values, blue = RCP 4.5, red = RCP 8.5, Eastern Washington region 1970-1999 to 2041-2070

Selecting climate scenarios using hydrologic sensitivities

irrigation season (Apr-Sep) streamflow sensitivity in the Yakima River basin, WA

1. CESM1-CAM5	18. BNU-ESM
2. CCSM4	19. FIO-ESM
3. CNRM-CM5	20. MPI-ESM-LR
4. HodGEM2-ES	21. GFDL-CM3
5. HodGEM2-CC	22. MRI-CGCM3
6. CMCC-CM	23. inmcm4
7. EC-EARTH	24. FGOALS-s2
8. CanESM2	25. FGOALS-g2
9. IPSL-CM5A-MR	26. GISS-E2-R
10. bcc-csm1-1-m	27. GISS-E2-H
11. HodGEM2-AO	28. bcc-csm1-1
12. MIROC5	29. GFDL-ESM2M
13. NorESM1-M	30. GFDL-ESM2G
14. CMCC-CMS	31. MIROC-ESM-CHEM
15. CSIRO-Mk3-6-0	32. MIROC-ESM
16. IPSL-CM5A-LR	33. IPSL-CM5B-LR
17. MPI-ESM-MR	

Legend key: Dark = MACA available

Light = MACA not available

Models ranked by performance index

GCM ranking from Rupp et al. (JGR 2013), contours of streamflow change derived from S and ε values, blue = RCP 4.5, red = RCP 8.5, Eastern Washington region 1970-1999 to 2041-2070

Selecting climate scenarios using hydrologic sensitivities

irrigation season (Apr-Sep) streamflow sensitivity in the Yakima River basin, WA

1.	CESM1-CAM5	18.	BNU-ESM
2.	CCSM4	19.	FIO-ESM
3.	CNRM-CM5	20.	MPI-ESM-LR
4.	HodGEM2-ES	21.	GFDL-CM3
5.	HodGEM2-CC	22.	MRI-CGCM3
6.	CMCC-CM	23.	inmcm4
7.	EC-EARTH	24.	FGOALS-s2
8.	ConESM2	25.	FGOALS-g2
9.	IPSL-CM5A-MR	26.	GISS-E2-R
10.	bcc-csm1-1-m	27.	GISS-E2-H
11.	HodGEM2-AO	28.	bcc-csm1-1
12.	MIROC5	29.	GFDL-ESM2M
13.	NorESM1-M	30.	GFDL-ESM2G
14.	CMCC-CMS	31.	MIROC-ESM-CHEM
15.	CSIRO-Mk3-6-0	32.	MIROC-ESM
16.	IPSL-CM5A-LR	33.	IPSL-CM5B-LR
17.	MPI-ESM-MR		

Legend key: Dark = MACA available

Light = MACA not available

Models ranked by performance index

GCM ranking from Rupp et al. (JGR 2013), contours of streamflow change derived from S and ε values, blue = RCP 4.5, red = RCP 8.5, Eastern Washington region 1970-1999 to 2041-2070

Selecting climate scenarios in three river basins and seasons

Contours based on Variable Infiltration Capacity hydrologic model derived sensitivities

Distribution of global climate models for Change in discharge (%) specific seasons Taking 5 AMJJAS **OR/WA Coast** Streamflow $S(\Delta T) \Delta T + ε \Delta P$ = change Yakima Willamette **Upper Columbia** YENGIPHEE AMJJAS Willamette JJA RCP45 West Cascades **OR/WA** Coast Columbia AMJ 0.08 RCP85 RCP85 0.06 Density 0.04

Yakima AMJJAS

0.08

0.06

0.02

40

Impact: Total Vegetation Carbon

Total vegetation carbon for three ecoregion

Contours based on MC2 dynamic general vegetation model derived sensitivities

Summary

The approach:

- Allows impacts to guide GCM selection rather than T and P changes
- Is computationally efficient
- Provides defensible GCM selection for publicly scrutinized decision-making, ideally frees up resources
- Provides both qualitative and more technical evaluations
- Is transportable, can be applied to multiple impacts

Acknowledgements

GCM precipitation and temperature changes where calculated from data downloaded at http://cmip-pcmdi.llnl.gov/cmip5. Support for this work was provided by the National Science Foundation under Awards No. EAR-1250087 and EAR-1039192, by the U.S. National Oceanic and Atmospheric Administration, Grant NA100AR4310218, and by USGS, Grant #G12AC20495

Feedback, questions?? contact Julie Vano, jvano@coas.oregonstate.edu

Summary

The approach:

- Allows impacts to guide GCM selection rather than T and P changes
- Is computationally efficient, e.g., in the Yakima we evaluated 142+ GCM runs using only 9 impact model simulations
- Provides defensible GCM selection for publicly scrutinized decisionmaking, ideally frees up resources to understand nature of change instead of data management
- Provides information to those interested in both qualitative and more technical evaluations
- Is transportable, can be applied to multiple impacts. We demonstrate with one hydrologic model and vegetation model, but could be applied to other impacts or employed using other simulation models.

Extra Slides

Considerations

(1) Linearity, the extent to which a small change (e.g., 0.1 °C), which provides a reasonable approximation of the tangent of the change, is proportional to a larger change (e.g., 3 °C) which captures the secant

(2) Superposition, the extent to which hydrologic sensitivities identified through independent simulations can be added together to equal the same value as changes applied within the same simulation.

$$\begin{array}{l} & & & ?\\ \Delta Q_{1\%P} + \Delta Q_{1^{\circ}C} \stackrel{?}{=} \Delta Q_{1^{\circ}C \& 1\%P} \\ & & \Delta Q_{3^{\circ}C \text{ warm season}} + \Delta Q_{3^{\circ}C \text{ cool season}} \stackrel{?}{=} \Delta Q_{3^{\circ}C \text{ year round}} \end{array}$$