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!   Variations in climatic conditions force temporal and spatial 
variability in eelgrass (the most widespread of ~60 species 
of seagrass) 

!   Trends in water level and temperature forced by climatic/
ocean conditions can be mechanistically connected to 
variation in eelgrass 

!   There have been global losses of seagrasses, many 
blamed on human impacts (BioScience & PNAS papers) 

!   Plans to restore eelgrass must consider the natural 
variation, and factors contributing to this variation 



Three Study 
Areas: 
-Sequim Bay 
-Clinton  
-Willapa Bay 
(Westcott Bay) 
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Depth Distribution 
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contributed to the variation in calculated net production.
Eelgrass cover was 100% at all but the shallowest site, and
the decline in density appeared to be related to an increase in
the size of the plants with increasing depth.

Integrated PPFD measured during late spring–summer at
the Maury Island site averaged 2.6 mol quanta m−2 day−1 at
the deepest edge of eelgrass distribution (Table 1). In
contrast, PPFD averaged 2.3 mol quanta m−2 day−1 below
the edge and 6.0 mol quanta m−2 day−1 in the middle of the
meadow. It is worthy to note that the lower edge of eelgrass
occurred where PPFD exceeded 3 mol quanta m−2 day−1 on
36% of the days. Mean Kd between mid-May and the end
of July was 1.64 (SD=0.15; n=41).

Discussion

Light Requirements

Taken together, these studies provide evidence for instan-
taneous and long-term light requirements for eelgrass in the
Pacific Northwest. Both the instantaneous Pnet–I curves and
the depth-vs-density-vs-light data indicate that the rate of
eelgrass photosynthesis is maximum (i.e., Imax sensu
Touchette and Burkholder 2000) at irradiances between
about 350 and 550 μmol quanta m−2 s−1. This range in
values is near the high end for eelgrass reported elsewhere
(Dennison and Alberte 1982, 1985, 1986; Olsen and Sand-
Jensen 1993; Larkum et al. 2006). However, Imax values
reported from seven studies in the review by Touchette and
Burkholder (2000) ranged 100–900 μmol quanta m−2 s−1.
Using the low values (where low and high values were
reported for a study in Table 4 of Touchette and Burkholder),
the average Imax=400 μmol quanta m−2 s−1 (SD=248). Water
temperature is important because of its effect on photosyn-
thesis-to-respiration ratios. Greater respiration rates reduce net
apparent photosynthesis (Zimmerman et al. 1989). The most
obvious indication of this was the substantial (three times)
greater net primary productivity at saturating PPFD recorded
for “winter” vs “summer” plants. Our visual observations
suggested that the winter plants were morphologically and
perhaps physiologically adapted for harvesting and using low
quantities of light by reducing biomass and concentrating
chlorophyll. Furthermore, plants in winter were devoid of
visible epiphytes, whereas diatom loads were visibly evident
on leaves in summer. Several studies indicate strong photo-
adaptation capabilities of seagrass and attribute seasonal
variation in seagrass growth to light and thermal acclimati-
zation of leaf morphology, chlorophyll content, and other
factors (Dennison and Alberte 1986; Mazzella and Alberte
1986; Zimmerman et al. 1989; Olsen and Sand-Jensen 1993;
Major and Dunton 2002; Cummings and Zimmerman 2003).
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Desiccation & Temperature Affects Growth 
Rate 
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Net Primary Productivity (NPP) and Respiration 
(R) is Strongly Affected by Temperature (Thom et 
al. In Press.  J. Coastal Research) 
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Conditions at the Equator ‘Indicate’ a Response in 
Puget Sound (Oceanic Niño Index, SST at Niño 3.4) 
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Eelgrass	
  

Willapa	
  Bay	
  –	
  very	
  broad	
  
flats,	
  with	
  eelgrass	
  on	
  the	
  
edge	
  (Borde	
  et	
  al.	
  2003.	
  Estuaries	
  
26:1104-­‐1116)	
  



Willapa Bay Eelgrass Showed Major 
Changes During the ENSO Event (Thom et al. 
2003. Estuaries 26:1117-1129) 
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Eelgrass 
Density Varied 
Relative to ONI, 
Water Temp. 
ONI Neutral Years 
had Highest Density 
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Leaf Growth over 3-5 two-week periods June-
August 

17 



Growth was 
greatest in April-
May when low 
tides occur 
during daytime, 
and water is still 
cool (Thom et al. 
2008. Estuaries and 
Coasts 31:969-980.) 
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summer to survive during periods of extended low light
(Zimmerman et al. 1995; Burke et al. 1996; Zimmerman
and Alberte 1996). Despite low light conditions, we found
that PNW eelgrass grows during the late winter and that
eelgrass plants appear to be well adapted to take advantage
of short irradiance pulses. However, because of the relative
lack of irradiance the plants receive during late winter, we
conclude that the plants are cuing off increasing water
temperature (instead of irradiance) to begin growth and
utilizing stored energy to grow. We do not have compre-
hensive field data on water temperature at our study site.
However, intake water for the seawater system at our
laboratory (very close to were we conducted the studies)
shows an increase from February through late summer, with
maximum temperatures during July–August, and other
experimental evidence strongly points to a temperature
control of both net primary production and respiration
(Thom et al., in preparation). Until there is further research,
we recommend that the average light level (instantaneous
and integrated) requirements found by us be applicable to
the period between 1 May and 30 September.

Application of Requirements

The light requirements we propose for the PNW apply to
larger (adult) shoots that are either free of, or minimally
colonized by, epiphytes and do not address young leaf
growth, seedling growth, or other important plant life cycle
support such as flower initiation, seed production, or
germination, all of which may be influenced by light levels
(Hemminga and Duarte 2000). Epiphyte loads can reduce
light reaching leaves and thereby drastically affect plant
growth (e.g., Brush and Nixon 2002).

These light requirements can be used to forecast the
potential effect of reduced light on eelgrass growth and
survival. Light reductions may be permanent (e.g., con-
struction of a wharf) or temporary (e.g., temporary moorage
of a construction barge or increased turbidity pulses). Based

Table 2 Summary of irradi-
ance requirements for eelgrass
productivity, growth, and long-
term (>1 year) survival in
Pacific Northwest estuaries.
Spring–summer refers to May
through September

Measure Season Estimate Note

Net Pmax (mgC g−1 h−1) Winter ∼5.5 From Fig. 2
Spring ∼5.0 From Fig. 2
Summer ∼2.0 From Fig. 2

Imax (μmol quanta m−2 s−1) Winter ∼350 From Fig. 2
Spring ∼400 From Fig. 2
Summer ∼550 From Fig. 2

Icompensation

(μmol quanta m−2 s−1)
Spring–summer ∼50 From Fig. 9 (maximum depth limit

approximately −7 m MSL in central
Puget Sound); midday PPFD

Integrated daily average
PPFD (mol quanta m−2 day−1)

Spring–summer <3 Growth limited; survival not supported
Spring–summer 3–6 Growth limited; survival supported
Spring–summer ≥7 Growth not limited; survival supported
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Leaf Growth Rate (Summer) – Sequim Bay 
(Thom et al. In Press. J. of Coastal Res.) 
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Oceanic Nino Index 
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Mean Sea Level Anomaly – Port Angeles 
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Mean Sea Level Anomaly – Port Angeles 
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Leaf Growth Rate (Summer) – Sequim Bay 
(Thom et al. In Press. J. of Coastal Res.) 
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Leaf Growth Rate (Summer) – Sequim Bay 
(Thom et al. In Press. J. of Coastal Res.) 
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!   Substantial inter-annual variation in eelgrass density, 
abundance, and growth is common in the PNW 

!   Climate/ocean conditions appear to be significant drivers  
!   Plans to restore eelgrass must consider the natural variation, 

and factors contributing to this variation 
!   i.e., give restoration efforts a break 

!   Climate change (sea surface temperature, elevation) will 
affect eelgrass abundance 

!   Ecosystem services and the species utilizing eelgrass will be 
affected by these changes 
!   e.g., seagrass globally could store up to 19.9Pg Corg (Fourqurean et 

al. 2012. Nature Geosci.) 

!   Long-term ecological monitoring is rare but critical 
!   Predictive capability is possible   
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Thank	
  You	
  for	
  Listening!	
  


