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Goal 

To apply multiple lines of evidence to 
assessing species vulnerability to climate 
change in focal landscapes. 
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PNWCCVA Data 

• Sensitivity database (Case 2013) 

• Downscaled climate projections 
(Shafer and Bartlein 2011) 

• Climatic niche models 

– Tree species and vegetation 
systems (Case and Lawler 2013) 

• Mechanistic vegetation change 
projections (Shafer, in review) 

• A2 emission scenario, 2080s 



Challenges 

• Wide range of data types and 
information 

• Potentially conflicting future conditions 

• How to develop a coherent storyline? 



Three Case Studies 
Sagebrush steppe on 
the Columbia 
Plateau Whitebark pine in 

the Pioneer 
Mountains, ID 

Oregon white oak in the 
Willamette Valley, OR 



Inherent Sensitivities 
•  High elevation cold sites 
•  Depends on summer snowmelt 
•  Sensitive to fire regime change 
•  Under existing stress from insects and 

pathogens 

•  Spans wide north-south gradient 
•  Benefits from warm dry conditions 
•  Dispersal limited 
•  Sensitive to changes in fire regime 

•  Large geographic range with locally 
adapted genotypes 

•  Reduced snow and warm temperature may 
benefit 

•  Impacts from moisture changes differ 
depending on local soil conditions 



Climatic Niche Models 
• Based on climate conditions only 
• Do not account for: 

– Dispersal 
– Competition 
–  Evolutionary adaptation 
– CO2 fertilization 

Where is the climate currently occupied 
by the species/system expected to be 
in the future? 



Climatic Niche Projections 

Whitebark Pine 

Consistent 
decline in 
climatic suitability  

(Range 
Contraction) 



Climatic Niche Projections 

Oregon white oak 

Consistent 
stable or 
improved 
climatic 
suitability  

(Range 
Expansion) 



Climatic Niche Projections 

Sagebrush Steppe 

Less model 
agreement 

Stability in the 
north 

Contraction in 
the South 

Artemesia 
tridentata 

Intermountain 
Basin Big 
Sagebrush 
Steppe 



Lund Potsdam Jena 

Lund Potsdam Jena Model 
(Shafer 2012) 

Shrub Steppe 
Grassland Various Forest 

Types 



How to reconcile? 

Areas may be climatically suitable, but 
competition and other interactions can 
reduce or eliminate suitability 



Case Study Summaries 
•  Highly sensitive 
•  Climatic suitability contracts 
•  Fire regime conditions change 
•  Potentially increased damage from 

insects and pathogens 

•  Moderate to low sensitivity 
•  Climatic suitability stable or improves 
•  Increased CO2 may favor conifer forest 

•  Moderate to low sensitivity 
•  Shift in climatic suitability 
•  Impacts of climate and competition highly 

uncertain 



Developing a Coherent Story 

•  Reviewing as many types of evidence as 
possible is critical 

•  Degree of convergence varies depending on 
the case 

•  Apparent disagreement may highlight 
uncertainty or just different processes 

•  Partnerships between land managers, field 
experts, and modelers are essential 
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