Flooding in the lower Snohomish: Sea Level Rise, Flooding, and Inundation

Source: WSDOT

Guillaume Mauger, UW CIG Se-Yeun Lee, UW SEFS Kris Johnson, TNC Ray Walton, WEST consultants

In the Northwest, we expect flood risk to be particularly sensitive to climate change.

Why?

1. Sea Level Rise: Coastal floodplains

2. Storms: Heavier rain events

3. Snow: Rising snowlines

What's missing:

- 1. Need to look at *inundation*: which areas are flooded?
- 2. Consider *combined effects* of sea level and streamflow

e.g.: Skagit River:

Figure Source: Joe Hamman, UW

Lower Snohomish River Basin

Hydraulic model: 1D HEC-RAS

Calibrated on Nov 1990 and Jan 2009 floods

Preview: Results

10-year Flood, Historical (1980s)

Coastal Flooding =

Storm Surge +

Tides +

Waves +

Freshwater Runoff +

Sea Level Rise

Storm Surge

Storm Surge, Seattle (peak annual, rel. to MHHW)		Highly correlated with Everett gauge (r² = 0.98)
10-year	+24 inches	
100-year	+32 inches	

Based on the "skew surge," estimated using observed and predicted tides from Seattle

Figure Source: McMillan et al., 2011

```
Coastal Flooding =

Storm Surge*+

Tides +

Waves +

Freshwater Runoff +

Sea Level Rise
```

^{*}Current projections do not show a change in storm surge

Coastal Flooding = Storm Surge + Tides + Waves + (sheltered by Whidbey Island to the West) Freshwater Runoff + Sea Level Rise

Coastal Flooding = Storm Surge + Tides + Waves + Freshwater Runoff + Sea Level Rise

Lower Snohomish River Basin

Peak streamflow projections

By the 2080s, the historical 100-year event is projected to occur every 30 years.

http://warm.atmos.washington.edu/2860/

Change in Peak Streamflow Snohomish at Monroe

Recurrence Intervals (Years)

Supported by Ecology (HB2860), BPA, NWPCC, ODWR, BC Ministry of Enviro

Synthetic peak flow hydrograph

e.g.: 10-year event,
Snohomish R. at Monroe:

Pilchuck:

+25% +25% +24% +24%

Source: Snohomish County, Restudy Flood Insurance Study, 2001

Coastal Flooding = Storm Surge + Tides + Waves + Freshwater Runoff + Sea Level Rise

Sea Level Rise

Projected Range, Snohomish Relative to 2000 (NRC, 2012)				
2040s	+5.5 to +9.1 inches			
2080s	+13.2 to +25.3 inches			

Based on estimated subsidence rate of 1 mm/yr for Anacortes, WA (NRC 2012)

10-year Flood, Historical (1980s)

10-year Flood, A1b 2080s, Low

10-year Flood, A1b 2080s, High

100-year Flood, Historical (1980s)

100-year Flood, A1b 2080s, Low

100-year Flood, A1b 2080s, High

UW Climate Impacts Group www.cses.washington.edu/cig

Climate Science in the Public Interest

Surge and Peak Streamflow are uncorrelated in the Snohomish

1. Sea Level Rise:

Projected in All Scenarios by 2100

Projected Range, Seattle Relative to 2000 (NRC 2012)				
2030	-1.5 to +8.8 inches			
2050	-1.0 to +18.8 inches			
2100	+3.9 to +56.3 inches			

NRC 2012 vs. Mote et al. 2008

Figure source: Climate Impacts Group

2. Storms:

There is growing evidence that the frequency and intensity of severe storms will increase.

Simulated future storm from the WRF regional model.

3. Snow:

Our primary mechanism for storing water – snow – is sensitive to warming.

The Cascade and Olympic Mountains have the highest fraction of "warm snow" (snow falling between 27-32°F) in the continental U.S.

(Mote et al. 2008)

Higher peak streamflow

Change in Monthly Streamflow Snohomish at Monroe

http://warm.atmos.washington.edu/2860/

Supported by Ecology (HB2860), BPA, NWPCC, ODWR, BC Ministry of Enviro

Everett Historical 10-year flood (existing conditions)

10-year Flood Historical (1980s)

10-year Flood 2080s, Low

10-year Flood *Historical*

Everett Historical 100-year flood (existing conditions)

100-year Flood *Historical (1980s)*

100-year Flood *2080s, Low*

2080s 100-year flood, high-end projection (existing conditions) Everett Historical 100-year flood (existing conditions)

100-year Flood *Historical*