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Predicting the Response of the Columbia River Basin to Climate Change

Columbia River Basin Snow Water Equivalent and Streamflow
The Dalles - A1B Scenario
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Figure adapted from Hamlet et al., 2010.




Predicting the Response of the Columbia River Basin to Climate Change
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What’s new in this study?

1. Latest CMIP5 climate change
scenarios

2. Rapid evaluation of large
number of climate change
projections

3. Multiple downscaling
methods which will fully
exploit CMIP5 data at daily
time step

4. Multiple hydrologic models

- including a novel glacier
representation in one of them
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Observation Stations
Change in mean annual temperature between 1911 and 2010

Greater than 2 deg F increase
Up to 2 deg F increase
Up to 1 deg F decrease




Why we need to consider glaciers in VIC

Glaciers redistribute ice from the accumulation
zone to the ablation zone.
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Hydrologic Response to Glacier Recession

How will the size and position of
a glacier respond to a warming
climate?
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The Variable Infiltration Capacity Model: Overview

Cell Energy and Moisture Fluxes
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Macro-scale semi-
distributed hydrologic
model (Liang et al., 1994).

Key Features:

Large, disconnected grid
cells (7km x 7km).

Represents sub-grid
variability via statistical
tiling scheme.

Nonlinear distribution of
soil moisture, infiltration
capacity, and baseflow
recession.

Iterates to find surface
temperature and close the
energy balance.




The Variable Infiltration Capacity Model: Snow
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The Variable Infiltration Capacity Model: Topography

Elevation -

Precipitation

Snow Depth
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Temperature

Elevation bands are
used to represent
topographic subgrid
variability.

Elevation bands are
not explicitly
connected.

Full water and energy
balance is calculated
for each band.



The VIC Glacier Model
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VIC Glacier Model

Elevation -

Precipitation

e Show becomes ice based on
density threshold (750 kg/m?3)

e Assumes a linear distribution of
density in the snow pack layer.

Snow Depth

Ice Depth




Initial Results:
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Initial Results: Cascade Glacier Example
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VIC Glacier Simulation - Cascade Glacier
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Initial Results: Cascade Glacier Example

e VIC Glacier Simulation - Cascade Glacier
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* Glacier dynamics are collapsed _

to a scaling relationship
between ice volume (V) and ice
area (A).
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* Derived from dynamics
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Initial Results: Cascade Glacier Example

VIC Glacier Simulation - Cascade Glacier
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VIC Glacier Model

IAccumuIationI IRedistributior{ l Ablation

* |ce layeris
combined with the
snow pack layer for
energy balance and
snow melt
computations.

VIC Snow Algorithm
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e Standard VIC snow
algorithm is run using
bulk pack layer.



Initial Results: Cascade Glacier Example
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Glaciers in the PNW

50°N

45°N ..

Observed and Modeled Glacier Presence
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A few last comments...

» Volume-Area scaling doesn’t hold exactly when applied
to an aggregate grid-cell rather than a single glacier.

» Scaling parameters may be tuned, calibrated, or
estimated using observations.

» Requires better vertical resolution (more elevation
bands) to adequately resolve accumulation/ablation
line (ELA).

» Not directly applicable for glaciers larger than a single
grid cell.



e Questions?
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Motivation:
— 2860 Project (1 slide)
— BPA 304 Project (3 hydrologic models, VIC glacier model) (1 slide)
— Why we need to represent glacier model (1 slide)

* Description of VIC

— VIC structure, snow model, elevation bands (2 slides)

— Glacier model components (4 slides)
* Include summary of Bahr et al’s work.

* Results

— PNW glacier masks ( simulated / remote sensing ) (1 slide)

— Cascade glacier results (5 slides)
* Next steps

— Regionalization and/or calibration of scaling parameters (1 slide)
* Questions






VIC Snow Algorithm
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Sub-grid Elevation and
Vegetation Coverage




2. Prior Work: Volume-Area Scaling Model (Bahr et al)
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Slide taken from Bahr, 2011. CESM Land Ice Working Group Presentation: Scaling
Techniques for Simultaneously Modeling Hundreds of Thousands of Glaciers and Ice Caps
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Collapse complex glacier
dynamics to scaling
relationship between volume
and area.

Derived mathematically from
dynamics.

Derivations and modeling
show scaling is valid in both
steady state and non-steady
state. i.e., scaling is valid in
past, present, and future.

Empirically established from
data.

Bahr et al, 1997



2. Prior Work: Volume-Area Scaling Model (Bahr et al)

Also Need Response-Time Scaling

Response-time scaling: T =kAP

Y

Relaxes exponentially towards new state
with characteristic time T.

Small area, fast response to climate changes

Large area, slow response to climate changes

Columbia Glacier, AK (Photo: James Balog) Bahr et al, 1998; Pfeffer et al, 1998



Finally, Need Hypsometry

* Average shape of a glacier
— Long.
— Nearly linear.
* More data/analysis forthcoming.
— Constant width.

« Width given by (what else),
- W=c¢c, Aa

* Average shape of an ice cap
— Round.

B Slide taken from Bahr, 2011. CESM Land Ice Working Group Presentation: Scaling
Vatnajokull Ice Cap, Iceland Techniques for Simultaneously Modeling Hundreds of Thousands of Glaciers and Ice Caps



. . Surface Layer
Ice with Density >

700kg/m3 becomes S
. psnow
ice.

Pmax = 2psnow ~ P fsnow

Ice Layer

Ground Surface

Depth of snow that becomes ice
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