

Does snowpack sensitivity to warming temperature differ across the east/west divide of the Oregon Cascades?

Matthew G. Cooper¹ Anne W. Nolin¹ Mohammad Safeeq¹

College of Earth, Ocean, and Atmospheric Sciences

¹Oregon State University
²College of Earth, Ocean, and Atmospheric Science

Matthew Cooper
Water Resources Graduate Program
Oregon State University
coopemat@onid.orst.edu

Outline

- Snowpacks are gradually diminishing in the PNW
- Watershed-scale impacts are uncertain
- We are modeling sensitivity in watersheds on east and west side of Cascades
- We quantify sensitivity vs. elevation, volumetric loss of peak SWE, and average snowpack with 2°C warming
- We compare temperature lapse rates from two commonly used model forcing datasets
- Revisit of warming impacts
- Conclusions

Snowmelt provides water for irrigation, fish, recreation, and municipalities

Snowpacks are gradually diminishing

How will these regional trends emerge at the watershed scale?

Modeled Change in streamflow – McKenzie R. Basin + 1.5 °C (Courtesy Naomi Tague)

West and east-side study watersheds

West – McKenzie

- Frontal (2000 mm)
- Humid (82% RH)
- 3.8°C wet day T
- Deep snowpack

East – Deschutes

- Leeward (600 mm)
- Dry (72% RH)
- 4.4°C wet day T
- Shallow snowpack

The snowmelt energy balance model

(SnowModel, Liston and Elder, 2006)

- We quantify seasonal snow accumulation and melt for 1989 2011
- Apply 2 °C warming scenario to test the response of the snowpack

Research question – how does sensitivity vary with elevation?

Model results suggest the west side is more sensitive across most elevations

How does the total volume of SWE change on the west vs. the east?

56% reduction in peak Snow Water Equivalent

0.82 km³ ~ 300% capacity of Cougar Reservoir

30% reduction in peak Snow Water Equivalent

0.16 km³
~ 40% capacity of Lake
Billy Chinook

But, east-side model forcing data has a cold bias

Temperature bias increases with increasing elevation

Bias corrected monthly temperature lapse rates

Original data suggests the west side is more sensitive across most elevations

Bias corrected data suggests that sensitivity is similar on each side at high elevations

56% reduction in peak volumetric snowpack – west side +2°C warming

60% reduction in peak volumetric snowpack – east side +2°C warming

+2°C average conditions are in lowest percentiles of historical variability

West Side 2°C warming

East Side 2°C warming

What are the implications of a 2°C warming for water resources in the region?

East

60% Basin-wide loss in peak SWE – Deschutes

0.32 km³ difference in peak SWE, equivalent to

82% of Lake Billy Chinook's capacity, the largest reservoir in the basin

West

56% Basin-wide loss in peak SWE – McKenzie

 $0.8\ km^3$ difference in peak SWE, equivalent to

300% of Cougar Reservoir's capacity, the largest reservoir in the basin

Findings

- Warming impacts on snow on both sides of the range are significant – over 50% of volumetric peak SWE loss
- Sensitivity is similar on the east and west side at high elevations
- Biased lapse rates, either implicit in the forcing data or prescribed as parameters, can change these conclusions
- Large-scale gridded data has limitations when applied at the watershed scale

Acknowledgements:

Northwest Climate Science Center USGS

Dr. Eric Sproles

Dr. Glen Liston

Questions?

Thank you!

Matthew Cooper
Water Resources Graduate Program
Oregon State University
coopemat@onid.orst.edu

East-side modeling domain

Seasonal variability of lapse rates – gridded datasets compared to observations

Bias Correction

(Watanabe et al. 2012)

• Use the **ratio method** for precipitation

$$ppt_{corrected,i} = ppt_{0,i} \times \frac{ppt_{PRISM,normal_i}}{ppt_{CIG,normal_i}}$$

Use the delta method for temperature

$$temp_{corr,i} = temp_{0,i} + (temp_{PRISM,i} - temp_{CIG,i})$$