Does snowpack
sensitivity to warming
temperature differ across
the east/west divide of
the Oregon Cascades?
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Outline

Snowpacks are gradually diminishing in the PNW
Watershed-scale impacts are uncertain

We are modeling sensitivity in watersheds on east
and west side of Cascades

We quantify sensitivity vs. elevation, volumetric loss
of peak SWE, and average snowpack with 2°C
warming

We compare temperature lapse rates from two
commonly used model forcing datasets

Revisit of warming impacts
Conclusions



Snowmelt provides water for 1rrigation,
fish. recreation. and municipalities




Snowpacks are gradually diminishing

Historic linear trends in April 1 Snow Water Equivalent
a. Observed 1950-2000 b. Modeled
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How will these regional trends emerge at

the watershed scale?

Modeled Change in streamflow — McKenzie R. Basin + 1.5 °C (Courtesy Naomi Tague)
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West and east-side study watersheds

West — McKenzie

* Frontal (2000 mm)
 Humid (82% RH)

e 3.8°CwetdayT

* Deep snowpack

East — Deschutes

e Leeward (600 mm)
* Dry(72% RH)

e 44°CwetdayT

* Shallow snowpack

B Major Reservoir
A Snow Course

A Snotel

A  Met Station

® Qutlet Gage

[ Surface Fed Sub-Basin|

LI Metolius R.
[ McKenzie R.
[ Spring Fed Sub-Basin

s

_;f‘";;l';a‘lgegllly Chinook
” 8




The snowmelt energy balance model

(SnowModel, Liston and Elder, 2006)

* We quantify seasonal snow accumulation and melt for 1989 — 2011
* Apply 2 °C warming scenario to test the response of the snowpack
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Research question — how does sensitivity

vary with elevation?

3000 i Snowpack less
- sensitive to
E warming
S 2000
©
3 Snowpack more
w sensitive to
1000 | .
- warming

(Sproles et al. 2013)
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Model results suggest the west side 1s more

sensitive across most elevations
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How does the total volume of SWE

change on the west vs. the east?

SWE (m) SWE (m)

56% reduction in peak
Snow Water Equivalent

0.82 km3
~ 300% capacity of
Cougar Reservoir

30% reduction in peak
Snow Water Equivalent

0.16 km3
~ 40% capacity of Lake
Billy Chinook



east-side model forcing data has a

cold bias
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Bias corrected monthly temperature

lapse rates
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Original data suggests the west side 1s more

sensitive across most elevations
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Bias corrected data suggests that sensitivity

1s similar on each side at high elevations
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56% reduction in peak volumetric
snowpack — west side +2°C warming




60% reduction in peak volumetric
snowpack — east side +2°C warming
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SWE (m)
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What are the implications of a 2°C warming

for water resources 1n the region?

East

60% Basin-wide loss in peak SWE — Deschutes
O . 3 2 km3 difference in peak SWE, equivalent to

8 2% of Lake Billy Chinook’s capacity, the largest reservoir in the basin

West

5 6% Basin-wide loss in peak SWE — McKenzie

O . 8 k m 3 difference in peak SWE, equivalent to

(o)
(0] ougar Reservolr's capaC|ty, the argest reservolr in the basin
300 A) fC R ir’ ity, the | ir in the basi



Findings

 Warming impacts on snow on both sides of the range
are significant — over 50% of volumetric peak SWE loss

e Sensitivity is similar on the east and west side at high
elevations

* Biased lapse rates, either implicit in the forcing data or
prescribed as parameters, can change these
conclusions

e Large-scale gridded data has limitations when applied
at the watershed scale
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East-side modeling domain
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Seasonal variability of lapse rates — gridded

datasets compared to observations
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BlaS CO rrecnon (Watanabe et al. 2012)

* Use the ratio method for precipitation

pptPRISM,normal,;

pptcorrected,i — ppto,i X
pptCIG,normali

*Use the delta method for temperature

temp orr,i = tempg; + (temppgism,i — tempeyg,i)




